Thank you to the Howard Hughes Medical Institute for welcoming our group and supporting our vision of biomolecular ultrasound as an emerging technology for basic biology and medicine. press
Thank you to the Howard Hughes Medical Institute for welcoming our group and supporting our vision of biomolecular ultrasound as an emerging technology for basic biology and medicine. press
Congratulations to Avinoam and colleagues on showing that cells can be engineered to migrate into tumors and damage them from the inside upon receiving a focused ultrasound stimulus. Their new paper establishes gas vesicles as genetically encoded seeds for inertial cavitation, bringing together cellular and physical therapy.
Bar-Zion A, Nourmahnad A, Mittelstein DR, Shivaei S, Yoo S, Buss MT, Hurt RC, Malounda D, Abedi MH, Lee-Gosselin A, Swift MB, Maresca D, Shapiro MG*. Acoustically triggered mechanotherapy using genetically encoded gas vesicles. Nature Nanotechnology 16, 1403–1412 (2021). article | readcube
Can ultrasound detect gene expression in single cells? Congratulations to Danny, Avinoam, Arash, Shirin, Bill and Audrey on developing BURST – a new ultrasensitive imaging method that takes advantage of the unique properties of gas vesicle reporter genes to greatly improve the sensitivity of cellular ultrasound and enable the detection of individual cells.
Sawyer DP, Bar-Zion A, Farhadi A, Shivaei S, Ling B, Lee-Gosselin A, Shapiro MG*. Ultrasensitive ultrasound imaging of gene expression with signal unmixing. Nature Methods 18, 945-952 (2021). article | readcube | press
Congratulations to Yuxing, Zhiyang, Bill and Dina on uncovering the biophysics of gas vesicle self-assembly, a process leading to beautiful nanoscale arrangements inside and outside cells.
Yao Y, Jin Z, Ling B, Malounda D, Shapiro MG*. Self-assembly of protein superstructures by physical interactions under cytoplasm-like conditions. Biophysical Journal 120, 2701-2709 (2021). article
Congratulations to Claire, Di, Bill, Zhiyang and Dina on developing ultrafast amplitude modulation (uAM), a new method to acquire biomolecular ultrasound images in a fraction of a millisecond, with simultaneous imaging of blood flow.
Rabut C, Wu D, Ling B, Jin Z, Malounda D, Shapiro MG*. Ultrafast amplitude modulation for molecular and hemodynamic ultrasound imaging. Applied Physics Letters 118, 244102 (2021). article | bioRxiv preprint
Congratulations to Marjorie, Pradeep and colleagues on their new paper in Advanced Materials describing the use of magnetic fields to help probiotic agents localize and colonize within the mammalian gastrointestinal tract. This technology can help bacterial therapies find and establish themselves in their niche without disruptive antibiotics.
Buss MT#, Ramesh P#, English MA, Lee-Gosselin A, Shapiro MG*. Spatial control of probiotic bacteria in the gastrointestinal tract assisted by magnetic particles. Advanced Materials 33, 2007473 (2021). article
Congratulations to Mohamad, Michael and colleagues on their new study describing the development of ultrasound-controlled bacterial immunotherapy for solid tumors. This work increases the specificity and safety of an important class of emerging therapeutics by combining gene circuit engineering with ultrasound physics.
Abedi MH#, Yao M#, Mittelstein DR, Bar-Zion A, Swift MB, Lee-Gosselin A, Shapiro MG*. Acoustic remote control of bacterial immunotherapy. bioRxiv preprint
Congratulations to Sumner, David, Vasileios and colleagues on their new paper describing the use of functional ultrasound imaging to decode movement intentions. This work represents a critical first step towards minimally invasive, ultrasound-based brain-machine interfaces. Thanks to wonderful collaborators Richard Andersen and Mickaël Tanter.
Norman SL#, Maresca D#, Christopoulos VN#, Griggs WS, Demene C, Tanter M, Shapiro MG*, Andersen RA*. Single-trial decoding of movement intentions using functional ultrasound neuroimaging. Neuron 109, 1554-1566 (2021). article | press
Congratulations to Bill, Justin, David, Audrey, Dina and Margaret on their new study using systemically injected gas vesicles to non-invasively quantify both phagocytosis and lysosomal function in liver disease. This work represents the first diagnostic application of biomolecular ultrasound.
Ling B, Lee J, Maresca D, Lee-Gosselin A, Malounda D, Swift MB, Shapiro MG*. Biomolecular ultrasound imaging of phagolysosomal function. ACS Nano 14, 12210-12221 (2020). article